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Partial Least Squares Regression (PLSR) and Principle Component
Regression (PCR) are dimension reduction techniques especially used in the
presence of multicollinearity. In this study, these two techniques are
described and their performance is compared in terms of dimension
reduction. Root Mean Square Error of Cross Validation (RMSECV) is used as
comparison criteria. PLSR and PCR techniques are applied on internal
migration data in Turkey and it is found that PLSR technique is superior to
PCR in terms of dimension reduction.
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1. Introduction

Multiple regression analysis is a technique to
assess the functional relationship between a
dependent variable and two or more independent
variables. In multiple linear regression models, the
method of Least Squares is widely used to estimate
the regression coefficients. The least squares method
produces estimators with desirable properties under
certain assumptions (Chatterjee and Hadi, 2015).
One of the assumptions is that independent variables
are uncorrelated with each other (Gujarati, 2003).
Linear or near-linear relationship between
independent variables leads to multicollinearity
problem. The presence of multicollinearity problem
affects the signs of some regression coefficients in
the model. Also, it results in large variances and
covariance for the least-squares estimators of the
regression coefficients, and thus the confidence
intervals of coefficients and t statistics tend to be
wider and smaller, respectively (Montgomery et al.,
2001). While all or most of the regression
coefficients are insignificant, the coefficient of
determination is high and the model is significant.

The least squares estimators of the regression
coefficients are the best linear unbiased estimator.
Here "best" means giving the lowest variance of the
estimate when compared to other unbiased, linear
estimators. However, this feature is invalid in the
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presence of multicollinearity. In this case, the
multicollinearity should be removed. A lot of
methods are proposed to remove multicollinearity.
One of the methods is to use biased estimation
techniques (Rawlings et al., 1998).

One of the biased estimation techniques which
eliminate multicollinearity by reducing dimension is
Partial Least Squares Regression (PLSR), and the
other is Principle Component Regression (PCR). As
these two techniques are applied to problems
involving high collinearity in which the variance
tends to dominate the biased, both techniques bring
about similar results in many cases, and when used
appropriately, the techniques produce better
estimations than Least Squares (LS) technique
(Fekedulegn et al., 2002; Frank and Friedman, 1993;
Ziegel, 2004). In addition, these two techniques can
not only be applied to data in which the number of
observations is higher than that of independent
variables but also be applicable to data in which the
number of observations is lower than that of
independent variables (Helland, 1988; Vigneau et al,,
1997).

In literature, there are several studies comparing
PLSR with PCR in terms of different criteria. Naes
and Martens (1985) compared these two techniques
in terms of Mean Squares Error (MSE) and found
that PLSR used fewer latent variables than PCR.
Luinge et al. (1993) showed that these two
techniques were comparably similar in terms of
prediction error on a real data set. Diaz et al. (1997)
applied PLSR, PCR and LS on a real data set and used
Root Mean Square Deviation (RMSD) and square of
the correlation coefficient r? to evaluate the different
techniques. Ni and Gong (1997) compared LS, PCR
and PLSR techniques according to Relative Error of
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Prediction (REP) and did not observe significant
differences in precisions of prediction between PLSR
and PCR. Guiteras et al. (1998) applied LS, PCR and
PLSR techniques on multivariate data and compared
the predictions of the model in terms of the Relative
Root Mean Squared Difference (RRMSD). To predict
per capita gross domestic product of Turkey, Yeniay
and Goktas (2002) used LS, Ridge Regression (RR),
PLSR, and PCR techniques on a set of data gathered
from 80 cities in Turkey and showed that PLSR and
PCR techniques had the most predictive ability,
respectively. Wentzell and Montoto (2003) made a
simulation study on the complex chemical mixtures
which contained a large number of components and
reported that there was not any important difference
in terms of prediction ability between PLSR and PCR
techniques. Li (2010) made comparison of the
prediction performances of PLSR, PCR and RR
techniques according to Mean Square Error of
Prediction (MSEP) and obtained similar results.
Yaroshchyk et al. (2012) compared PCR, PLSR, Multi-
Block Partial Least Squares Regression (MB-PLSR)
and Serial Partial Least Squares Regression (S-PLSR).
They emphasized that PLSR and PCR models
produced similar prediction accuracy, although in
the case of PLSR there were notably less latent
variables in use by the model. Khajehsharifi et al.
(2014) compared the prediction ability of PLSR and
PCR techniques with respect to Root Mean Square
Error of Prediction (RMSEP) on a real data set and
found that PLSR had more predictive ability than the
other. Mahesh et al. (2015) compared the protein
contents and hardness values predicted by PLSR and
PCR models for bulk samples of Canadian wheat, and
assessed prediction performances of regression
models by calculating MSEP, Standard Error of Cross
validation (SECV), and correlation coefficient (r).

The purpose of this study is to compare PLSR and
PCR techniques with respect to Root Mean Square
Error of Cross Validation (RMSECV) criterion in
terms of dimension reduction on internal migration
data in Turkey.

The study is organized as follows: PLSR and PCR
techniques are briefly explained in Section 2;
RMSECV criterion is described in Section 3; these
techniques are applied on migration data in Turkey
in Section 4; finally, Section 5 presents the
conclusion.

2. PLSR and PCR techniques

Firstly, the matrix of X independent variables is
standardized in PLCR and PCR techniques. Following
this, new orthogonal variables are obtained by using
the linear combination of these standardized
variables. Lastly, to predict regression coefficients,
LS method is applied to these variables (Vigneau et
al., 1996).

The basic difference between PLSR and PCR
techniques is the fact that while PLSR uses
information on both dependent and independent
variables, PCR uses only information on independent
variables when component or latent variables are

obtained (Naes and Martens, 1985; Garthwaite,
1994).

PLSR and PCR techniques are explained in the
following section.

2.1. PLSR technique

The aim of PLSR is to describe the structure
between X and Y blocks and to predict Y block via X
block (D’Ambra and Sarnacchiora, 2010). PLSR
models the relationship between these two blocks
via score vectors. PLSR decomposes zero mean
variables X and zero mean variables Y as follows:

X=TP' +E (D

Y=UQ +F (2)
where T and U are matrices of score vectors
(components, latent vectors); P and Q represent
loading matrices; and E and F represent residual
matrices (Rosipal and Kramer, 2006). This
decomposition is done to maximize the covariance
between T and U.

While forming the PLSR model, a lower number
of components are used instead of using all the
independent variables by constructing new
variables. The new variables are called X scores and
denoted with T score matrix. T score matrix is
formed with the linear combinations of the
multiplication of original X matrix with the weight
matrix W".

(T =XW™) (3)

In PLSR, the weights are determined by
maximizing the covariance between the Ilatent
variables and dependent variables (Zeng et al,
2007). In addition, T’s, the corresponding X scores,
are good predictors of Y and can be given as follows:

Y =TC'+F) 4)
where C is the Y-weight matrix, and F is the Y-
residual matrix and shows the deviation between the
observed and modelled responses.

Finally, matrix B demonstrating the PLS-
regression coefficients is obtained from following
equation (Wold et al., 2001):

B=w'C’ (5)

PLSR technique can be used when the number of
dependent variables is single or more than one
(Garthwaite, 1994). However, when the dependent
variable Y is single and X'X' is diagonal, the PLSR
arrives at the LS solution in one component, and

PLSR and LS regression coefficients are equal (Wold
etal, 2001).

2.2. PCR technique

PCR is a technique that deals with the
multicollinearity problem by removing the nonstable
structure of the model and by decreasing the
variances of regression coefficients (Massy, 1965).

In PCR technique, firstly, the components are
obtained with Principal Component Analysis (PCA).
Following this, regression analysis is conducted by
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using the principal component scores as
independent variables (D'Ambra and Sarnacchiaro,
2010).

In order to demonstrate the PCR analysis, the

singular value decomposition (SVD) of X is done as
follows:

X =USP' (6)
where U matrix represents linear transformation of
X and S matrix is a diagonal matrix with elements
equal to singular values. They are linked to the
principal component score matrix T by T = US. The

regression equation based on scores can be given as
follows (Naes and Mevik 2001):

y=ay+Ty+e (7)

Score vectors corresponding to small eigenvalues
can be left out in order to avoid collinearity
problems from influencing the solution (Geladi and
Kowalski, 1986).

Let the matrix U, be defined as the columns of U
corresponding to the A largest eigenvalues of X’X.
The PCR is then defined as the regression of y onto
Ua.

y =09+ Upapn +f (8)

where f is generally different from the error term ¢
above. The estimates of the a’s in a4 are found by LS.
The PCR predictor ypcy is obtained as:

Vpcr =V + updy (9)

The value of us for a new sample is found by
projecting x onto the A first principal components
and by diving the score/projection, ¢, by the square
root of the eigenvalues. Note that for A = p, the PCR
predictor becomes identical to the LS predictor J. In
practice, the best choice of A is usually determined
by cross-validation (Naes and Mevik, 2001).

3. RMSECV

In this study, the RMSECV criterion is used to
compare the PLSR and PCR techniques in terms of
the dimension reduction ability on a real data set.
Therefore, we focused on certain concepts
associated with RMSECV and calculation of RMSECV.

Cross Validation is a generally applicable way to
predict the performance of a model. In this study, the
Leave-One-Out Cross Validation (LOOCV) technique
is used. Leave-One-Out is the most classical Cross
Validation procedure. In this procedure, each data
point is successively “left out” from the sample and
used for validation (Arlot and Celisse, 2010). In other
words, the Leave-One-Out Cross Validation (LOOCV)
uses a single observation from the whole sample as
the validation data, and the remaining observations
as the training data. This process is repeated until
each observation in the entire sample is used once as
the validation data (He et al., 2010).

Predicted Residual Sum of Squares (PRESS)
statistics is calculated using the LOOCV method. The
sum of squares of the difference between y; and ;)
is called PRESS (Allen, 1974):

PRESS = Y1, &l = X1y (i — 9 )? (10)

where, ;) is the fitted value of the ith response
based on all the observations except the ith one.
PRESS is a generally regarded as a measure of how
well a regression model will perform in predicting
new data. A model with a small value of PRESS is
desired (Montgomery et al., 2001).

RMSECV is a concept which is based on PRESS
statistics and which is calculated in relation to the
number of principle components or latent variables.
RMSECYV can be given as follows:

RMSECV = /PRf“ (11)

When different models are compared, the one
with the smallest RMSECV is considered the best
predictive model (Bodzioch et al., 2009).

4. The application of PLSR and PCR techniques on
internal migration data in Turkey

In this section, internal migration data of Turkey
from 2011 compiled by Turkish Statistical Institute
(TSI) are used to compare PLSR and PCR techniques
in terms of dimension reduction ability (TSI, 2011).
The analysis is conducted with Matlab PLS_Toolbox.
The data set contained 81 observations and 13
independent variables. The dependent and
independent variables are shown in Table 1.

Table 1: The dependent and independent variables

Y In-migration
X1 Population
Xz Unemployment ratio (%)
X3 Number of Beds in Hospitals (100000 per person)
X4 Number of Doctors
Xs Number of Nurses
X Electricity consumption per capita
X7 Percentage of housing with piped water system
Xs Infant Mortality Rate
Xo Total Fertility Rate
Xio Number of Motor Vehicles
Xi1 Number of Students per teacher
X12 Number of students per school
X3 Annual income per capita($)

The data has been standardized after the
logarithmic transformation has been applied, and
then multiple regression analysis has been
conducted. The results of regression analysis have
revealed that about 92% of the variance in the
dependent variable has been explained by the
independent variables, and the model is significant
at the level of 5%. Regression coefficients, Tolerance
Values (TV), variance inflation factor (VIF) and t
statistics can be seen in Table 2.

As can be seen in the table, the VIF of X; X, X5 and
Xip variables are greater than 10 and hence the TV of
these variables are less than 0.1. Although the model
is significant, all the regression coefficients except
for X; are insignificant. Also, the maximum
eigenvalue (A,4,) is 13.776; the minimum
eigenvalue (4,,;,) is 0.000029; and the condition
number is about 6475034. In addition, the sum of
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inverse of eigenvalues is greater than the number of

Table 2: Regression coefficients, tolerance values (TV), variance inflation factors (VIF

independent variables.

and t statistics

Unstandardized coefficients Standgr.dlzed - Multicollinearity statistics
coefficients t statistics p value
Beta Standard error Beta VIF TV

Constant 0.417 1.535 _ 0.272 0.787
X1 0.770 0.309 0.887 2.495 0.015 107.731 0.009
Xz -0.249 0.134 -0.093 -1.853 0.068 2.135 0.468
X3 -0.016 0.157 -0.007 -0.104 0.918 4.083 0.245
X4 -0.067 0.228 -0.087 -0.292 0.771 74.773 0.013
Xs 0.278 0.267 0.323 1.041 0.302 82.302 0.012
Xs 0.008 0.088 0.006 0.088 0.930 3.573 0.280
X7 -0.264 0.521 -0.026 -0.508 0.613 2.171 0.461
Xs -0.104 0.135 -0.035 -0.769 0.445 1.760 0.568
Xo -0.362 0.277 -0.130 -1.309 0.195 8.388 0.119
Xi0 -0.181 0.105 -0.265 -1.729 0.088 19.955 0.050
X11 -0.066 0.341 -0.016 -0.194 0.847 5.503 0.182
X1z 0.218 0.133 0.110 1.634 0.107 3.838 0.261
X13 0.060 0.104 0.040 0.582 0.562 3.929 0.255

Consequently, it could be stated that there is high
multicollinearity between the independent variables.
For this reason, PLSR and PCR from biased
estimation techniques are applied to the data. Below
are the RMSECV graphics associated with PLSR and
PCR and the tables showing the percentage of the
variance in the dependent and independent
variables explained by latent variables obtained with
these two techniques. As can be seen in Fig. 1, the
optimal number of latent variables, which is
determined by the minimum RMSECV value, is two.

0.138

0.136
0.134 *\ g
01321 | .
S
2
& 013 i E
.f/ \‘ /q_"“"—--..,_ —+
o128 | / E Il .
\/ \/
/
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0124 2 4 6 8 10 12

Latent Variable Number

Fig. 1: RMSECV graphic for PLSR technique

Table 3: Percentage variance captured using

X BLOCK

The number of

When Table 3, which presents the percentage
variance captured by PLSR, is examined, it is seen
that the minimum RMSECV value is reached with
two latent variables and that RMSECV value goes up
when the number of latent variables increases. Thus,
it is appropriate to use two latent variables. These
two latent variables in PLSR could explain 89.41% of
the variation in the dependent variable.

When PCR technique is used, in order to decide
the number of components which will remain in the
model, the RMSECV graphic corresponding to the
number of component and the table presenting the
percentage variance captured as in the PLSR
technique should be examined. Fig. 2 and Table 4
show RMSECYV graphic corresponding to the number
of component and percentage variance captured by
PCR technique, respectively.

As can be seen in Fig. 2 and Table 4, the optimal
number of components, which is determined by the
minimum RMSECV value, is seven. According to the
table, while the number of components increases,
related RMSECV values go up. Hence, it is
appropriate to use seven components. These seven
components in PCR could explain 90.75% of the
variation in the dependent variable.

PLSR
Y BLOCK

latent variable Varlalnce Total Varlalnce Total RMSECV
explanation rate explanation rate
1 39.63 39.63 87.22 87.22 0.13412
2 30.69 70.32 2.19 89.42 0.12469
3 7.89 78.21 1.21 90.62 0.12502
4 3.71 81.92 0.49 91.11 0.12925
5 4.83 86.75 0.22 91.33 0.12956
6 2.45 89.21 0.41 91.74 0.12975
7 3.82 93.03 0.12 91.86 0.12972
8 217 95.20 0.04 9191 0.12794
9 1.53 96.73 0.06 91.97 0.12489
10 1.19 97.92 0.06 92.03 0.12926
11 0.49 98.40 0.10 92.13 0.12903
12 1.53 99.93 0.00 92.13 0.12865
13 0.07 100.00 0.00 92.14 0.12879

According to the results of the analysis, while the
minimum RMSECV value obtained with PLSR

10

technique is 0.12469, RMSECV value obtained with
PCR is 0.12498. At the end of the analysis, although
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almost the same RMSECV values are obtained in two
techniques, PCR and PLSR reduce thirteen
independent variables to seven components and two
latent variables, respectively. Therefore, PLSR is
superior to PCR in terms of dimension reduction.

5. Conclusion

PLSR and PCR techniques are applied in case of
multicollinearity, and these biased estimation
techniques remove multicollinearity problem by
reducing data dimension. In this study, an
application on internal migration data of Turkey was
conducted to compare the ability of data dimension
reduction in terms of RMSECV. At the end of the
analysis, it was seen that the number of latent
variables in PLSR is less than the number of
components in PCR for almost the same RMSECV
value.

The number of X BLOCK

Table 4: Percentage Variance Captured Using

Consequently, according to this study, PLSR
technique is superior to PCR in terms of dimension
reduction.

022

0.2

0.16 \

0141

RMSECV
=1
=
e

Principal Component Number
Fig. 2: RMSECV graphic for PCR technique

PCR
Y BLOCK

Variance Variance RMSECV
Component ) . Total
explanation rate explanation rate

1 41.46 41.46 64,92 64.92 0.22554
2 29.95 71.40 23.06 87.98 0.13016
3 7.77 79.18 1.26 89.24 0.12595
4 6.47 85.65 0.39 89.63 0.12506
5 4.63 90.27 0.17 89.80 0.12587
6 3.01 93.28 0.07 89.87 0.12854
7 2.45 95.73 0.87 90.75 0.12498
8 1.66 97.39 0.01 90.75 0.12664
9 1.50 98.89 0.00 90.76 0.12914
10 0.67 99.56 0.08 90.83 0.13141
11 0.32 99.88 0.89 91.73 0.12789
12 0.07 99.95 0.17 91.90 0.12774
13 0.05 100.00 0.24 92.14 0.12879
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